
WP4: Nutriënten cycli in groendaken

Nutrient cycles and green roof ecosystem services

-C sequestration -> C cycle

Nutrient cycles and green roof ecosystem services

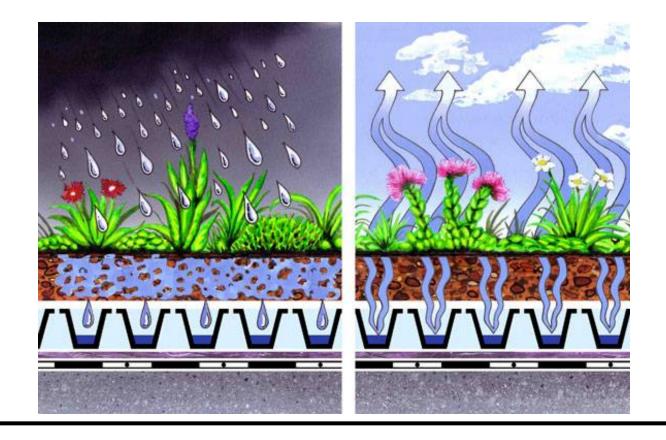
-water quality = nutrient retention -> N and P cycles

The C cycle: C sequestration

-Do green roofs sequester significant amounts of C?

-If yes, in which pools?

-How much in comparison with natural ecosystems?


-Societal impact?

-Can we increase it?

The N cycle: water quality

-Do green roofs have a significant buffer effect on nutrients? -Can we increase this effect?

Two experiments

C cycle

-Do green roofs sequester significant amounts of C?

-If yes, in which pools?

-How much in comparison with natural ecosystems?

-Societal impact?

-Can we increase it?

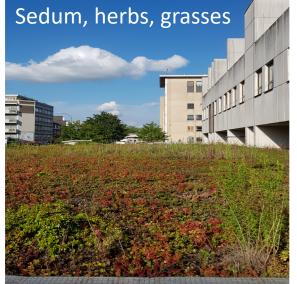
N cycle

-Do green roofs have a significant buffer effect on nutrients? -Can we increase this effect?

EXPERIMENT 1 EXPERIMENT 2

Experiment 1: measuring ecosystem services

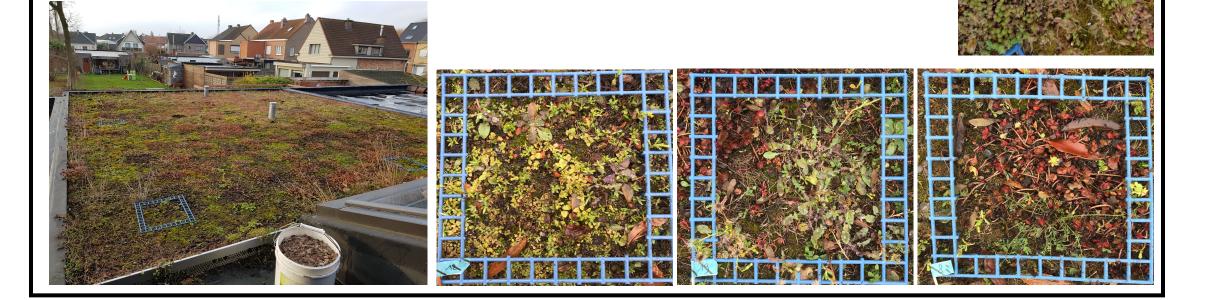
- -12 existing roofs:
 - -Variable age
 - -two vegetation types
 - -Fertilization (Y/N)
 - -Different substrate depths


Table 1: Characteristics of the studied extensive green roofs: roof ID, location, roof area, construction year, vegetation type, fertilization (Y= fertilized, N=not fertilized), average substrate depth.

Roof ID	Location	Area	Construction	Vegetation type	Fertilization	Average substrate
		(m²)	year		(Y/N)	depth (cm)
1	Ghent	25	2014	Diverse	Ν	7.0
2	Ghent	110	2005	Sedum-only	Ν	6.0
3	Ghent	588	2013	Sedum-only	Y	5.0
4	Ghent	76	2015	Diverse	Ν	8.0
5	Hasselt	432	2015	Diverse	Y	11.0
6	Hasselt	108	2012	Sedum-only	Y	5.0
7	Hasselt	175	2004	Diverse	Ν	8.0
8	Hasselt	225	2015	Diverse	Y	12.0
9	Antwerp	280	2008	Sedum-only	Y	4.5
10	Antwerp	708	2014	Sedum-only	Y	6.0
11	Antwerp	777	2009	Diverse	Y	8.5
12	Antwerp	312	2015	Diverse	Y	8.5

roofs

Experiment 1: measuring ecosystem se


Experiment 1: measuring ecosystem services

-Sample collection

-3 timepoints: April '19 (spring), July '19 (summer), October '19 (autumn), January '20 (winter)

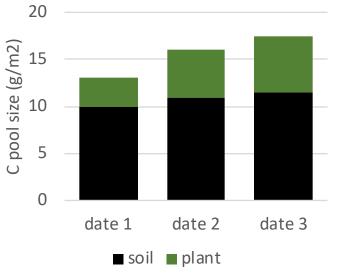
-4 random plots (25cmx25cm)

-Above ground vegetation / roots / substrate cores

Experiment 1: measuring ecosystem services

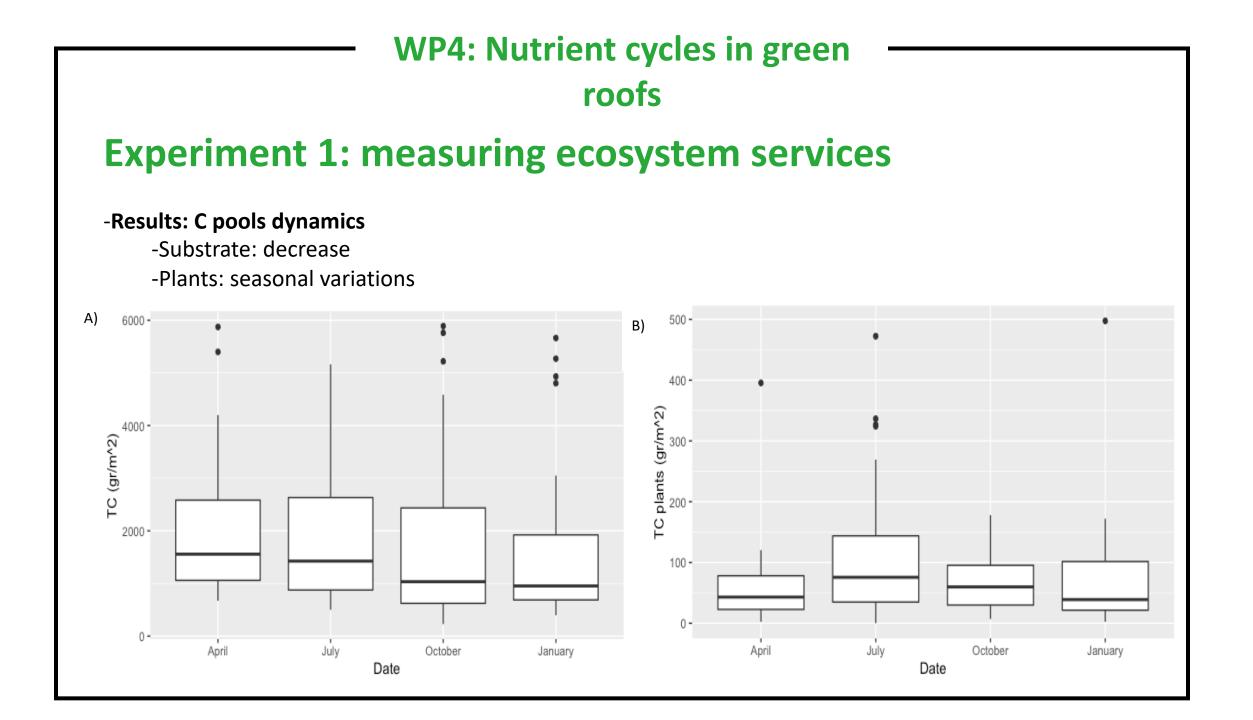
-Analyses

-pools: Total Carbon, Nitrogen and Phosphorus (substrate, vegetation)


-Fluxes: Nitrogen-mineralisation, nitrification

-pH

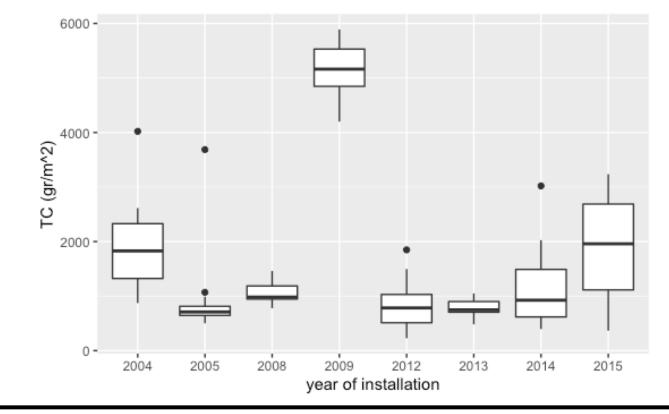
-Output


-C pool dynamics: C sequestration potential

-N and P pool dynamics + N fluxes: nutrient retention (partial)

Experiment 1: measuring ecosystem services

- Results: C pools -Large differences	TC (<i>g m⁻²</i>)	
-Low in comparison with natural ecosystems	Roof 1	1448 <u>+</u> 641
-FYI in plants: average 60 gC/m ² -Vs substrate: 1100 gC/m ²	Roof 2	924 <u>+</u> 779
-vs substrate. IIO gc/III-	Roof 3	743 <u>+</u> 164
	Roof 4	1382 <u>+</u> 559
	Roof 5	2451 <u>+</u> 496
	Roof 6	862 <u>+</u> 507
	Roof 7	1922 <u>+</u> 807
	Roof 8	2883 <u>+</u> 293
	Roof 9	1047 <u>+</u> 206
	Roof 10	714 <u>+</u> 306
Table 2. Augusta unline and standard deviation of substrate TC TM TO M minoralization act striftentics and	Roof 11	5142 <u>+</u> 527
Table 2: Average values and standard deviation of substrate TC, TN, TP, N-mineralization, net nitrification and pH per roof across all seasons (n=16: values \pm S.D.). For each variable, red to green gradient colors show the maximum to minimum scale. Roofs with diverse vegetation are in bold.Roof 12		



Experiment 1: measuring ecosystem services

-Results: C pools dynamics

-Testing effect of green roof age on C pool size -> not significant

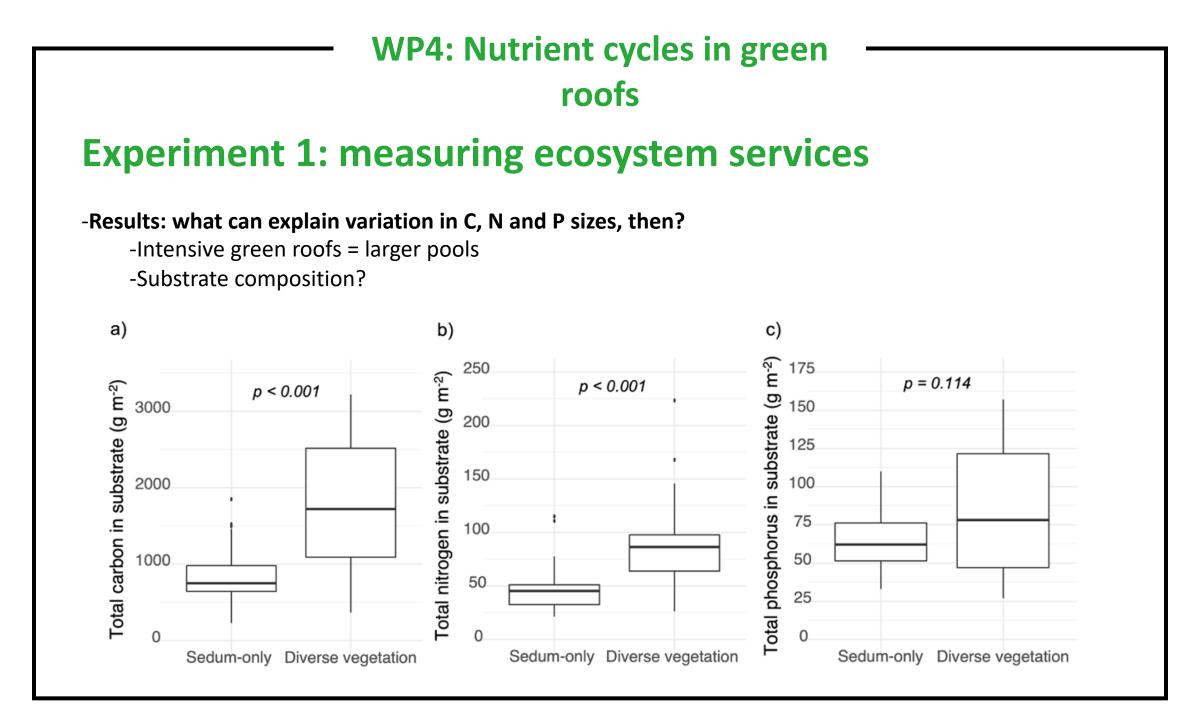
-> existing green roofs do not seem to sequester C

Experiment 1: measuring ecosystem services

-Results: N pools and fluxes

-Again highly variable

-Low fluxes


-dominated by nitrification

-Results: P pools

-Substrates very N rich (P/N)

	TC (g m⁻²)	TN (<i>g m</i> -²)	TP (<i>g m</i> ⁻²)	N – mineralization (mg N kg ⁻¹ soil day ⁻¹)	Net nitrification (mg N kg ⁻¹ soil day ⁻¹)	рН
Roof 1	1448 <u>+</u> 641	90 <u>+</u> 34	40 <u>+</u> 8	0.22 <u>+</u> 0.25	0.21 <u>+</u> 0.24	6.22 <u>+</u> 0.59
Roof 2	924 <u>+</u> 779	58 <u>+</u> 43	70 <u>+</u> 12	0.28 <u>+</u> 0.32	0.29 <u>+</u> 0.3	6.04 <u>+</u> 0.11
Roof 3	743 <u>+</u> 164	48 <u>+</u> 12	49 <u>+</u> 9	0.57 <u>+</u> 0.72	0.57 <u>+</u> 0.74	6.02 <u>+</u> 0.14
Roof 4	1382 <u>+</u> 559	72 <u>+</u> 27	68 <u>+</u> 17	0.16 <u>+</u> 0.29	0.18 <u>+</u> 0.28	6.06 <u>+</u> 0.15
Roof 5	2451 <u>+</u> 496	85 <u>+</u> 19	124 <u>+</u> 19	0.71 <u>+</u> 0.64	0.72 <u>+</u> 0.67	6.5 <u>+</u> 0.18
Roof 6	862 <u>+</u> 507	54 <u>+</u> 27	74 <u>+</u> 8	1.2 <u>+</u> 1.28	1.45 <u>+</u> 1.66	5.61 <u>+</u> 0.25
Roof 7	1922 <u>+</u> 807	103 <u>+ </u> 46	78 <u>+</u> 10	0.6 <u>+</u> 0.39	0.62 <u>+</u> 0.39	5.78 <u>+</u> 0.34
Roof 8	2883 <u>+</u> 293	90 <u>+</u> 10	137 <u>+</u> 12	0.18 <u>+</u> 0.14	0.19 <u>+</u> 0.16	6.69 <u>+</u> 0.08
Roof 9	1047 <u>+</u> 206	38 <u>+</u> 9	80 <u>+</u> 18	0.48 <u>+</u> 0.39	0.51 <u>+</u> 0.4	5.81 <u>+</u> 0.14
Roof 10	714 <u>+</u> 306	46 <u>+</u> 22	48 <u>+</u> 10	1.44 <u>+</u> 1.18	1.53 <u>+</u> 1.25	5.64 <u>+</u> 0.31
Roof 11	5142 <u>+</u> 527	167 <u>+</u> 29	147 <u>+</u> 21	2.06 <u>+</u> 1.57	2.11 <u>+</u> 1.56	5.9 <u>+</u> 0.19
Roof 12	833 <u>+</u> 255	62 <u>+</u> 17	43 <u>+</u> 10	0.61 <u>+</u> 0.31	0.64 <u>+</u> 0.28	6.56 <u>+</u> 0.29

Table 2: Average values and standard deviation of substrate TC, TN, TP, N-mineralization, net nitrification and pH per roof across all seasons (n=16: values \pm S.D.). For each variable, red to green gradient colors show the maximum to minimum scale. Roofs with diverse vegetation are in bold.

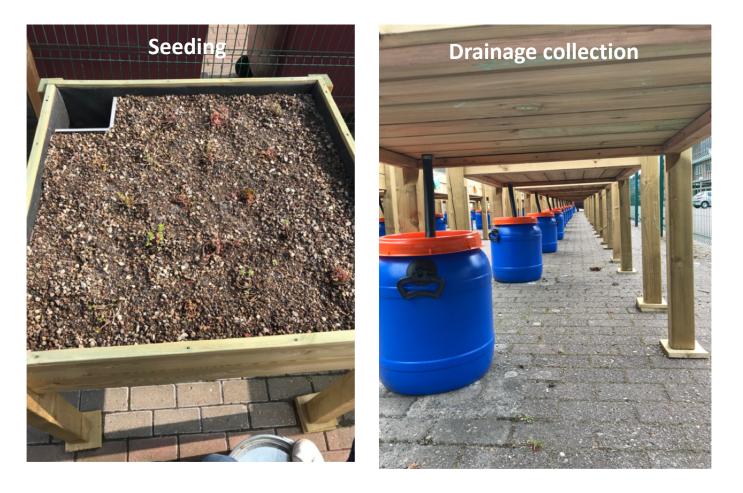
Experiment 1: measuring ecosystem services

-Summary:

- -C sequestration service non-existing in already established roofs
- -C and N-low, but P rich environment
- -Variability in pool sizes partly explained by vegetation type

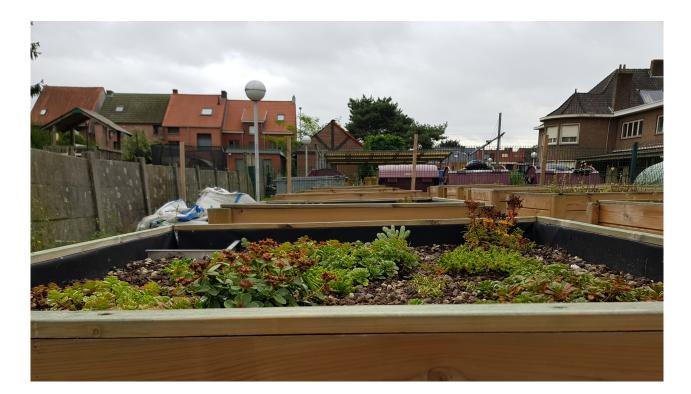
Experiment 2: enhancing ecosystem service delivery

-48 experimental roofs:	Vegetation	Substrate depth	Substrate type	Fertiliser	Biochar
 -Sedum / sedum+herbs Vegetation -High/ low Substrate depth 	Sedum spp.	6 cm -	conventional		
-+/- Organic matter-+/- Fertilization			conventional + additional OM		
-+/- Biochar		12 cm	conventional		
-3 reps -Not full-factorial			conventional + additional OM		
		12 cm	conventional		
	Sedum spp. +				
	herbs/grasses		conventional +		
			additional OM		


Experiment 2: enhancing ecosystem service delivery

Experiment 2: enhancing ecosystem service delivery

Experiment 2: enhancing ecosystem service delivery


Experiment 2: enhancing ecosystem service delivery

Experiment 2: enhancing ecosystem service delivery

Sample collection

-Installation end of April '19 -Sampling substrate + leachate -May '19 (beginning) -Sep '19 -May '20 -Sep '20 -Sep '21

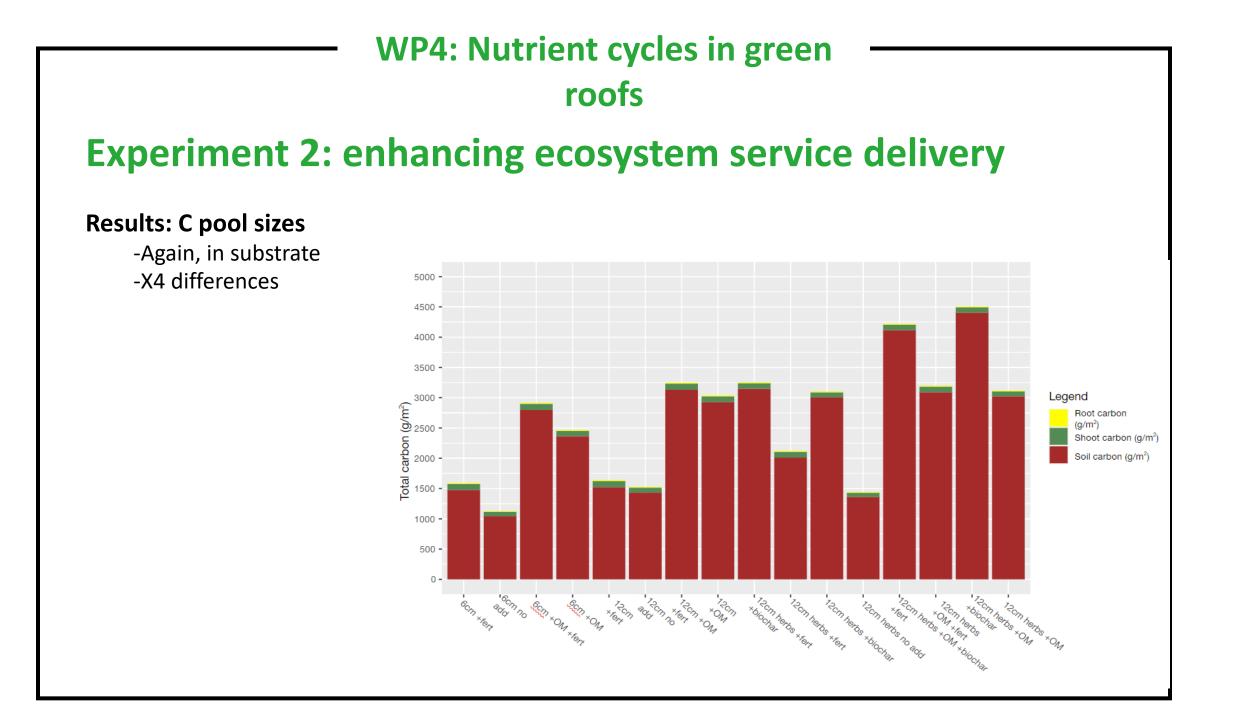
-Extra leachate sampling

-Jun '19, Jul '19, Aug '19 --> to see what happens in the first months after installation (lot of leaching?)

Experiment 2: enhancing ecosystem service delivery

Analyses

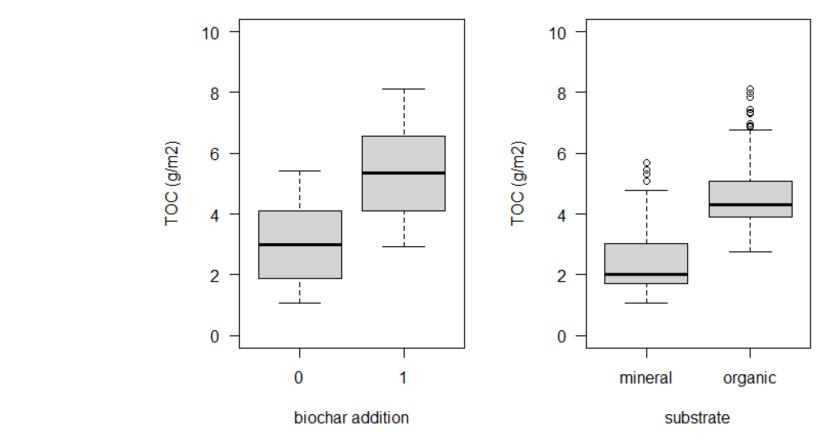
-pools: Total Carbon, Nitrogen and Phosphorus (substrate, vegetation)

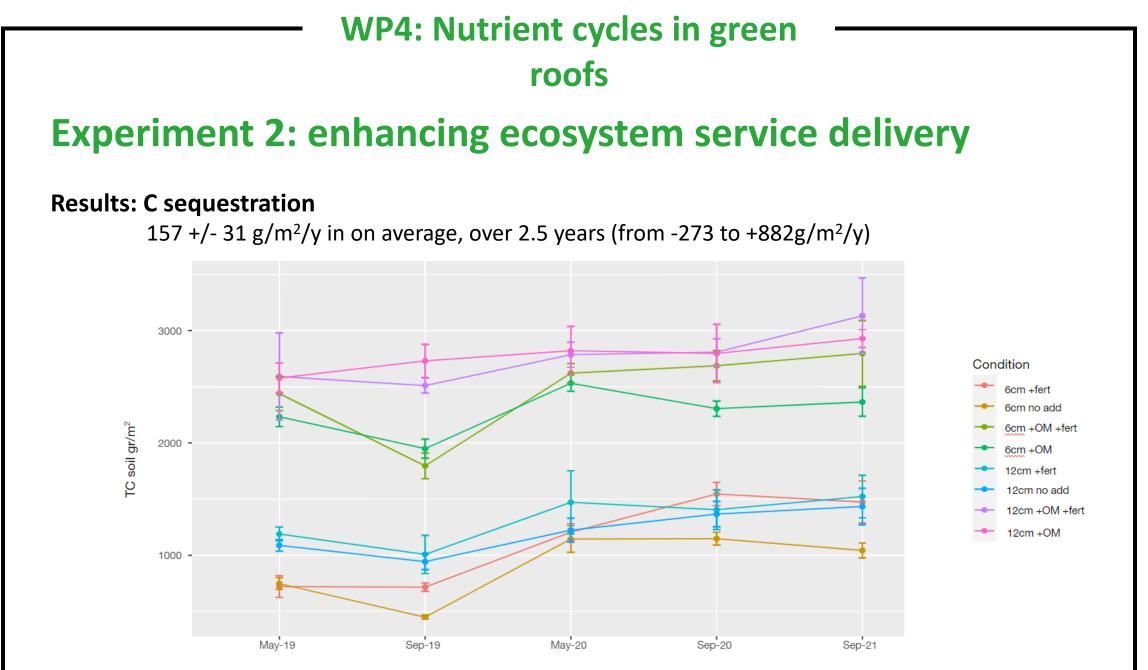

-Fluxes: Nitrogen-mineralisation, nitrification

-рН

Output

-C pool dynamics: C sequestration potential

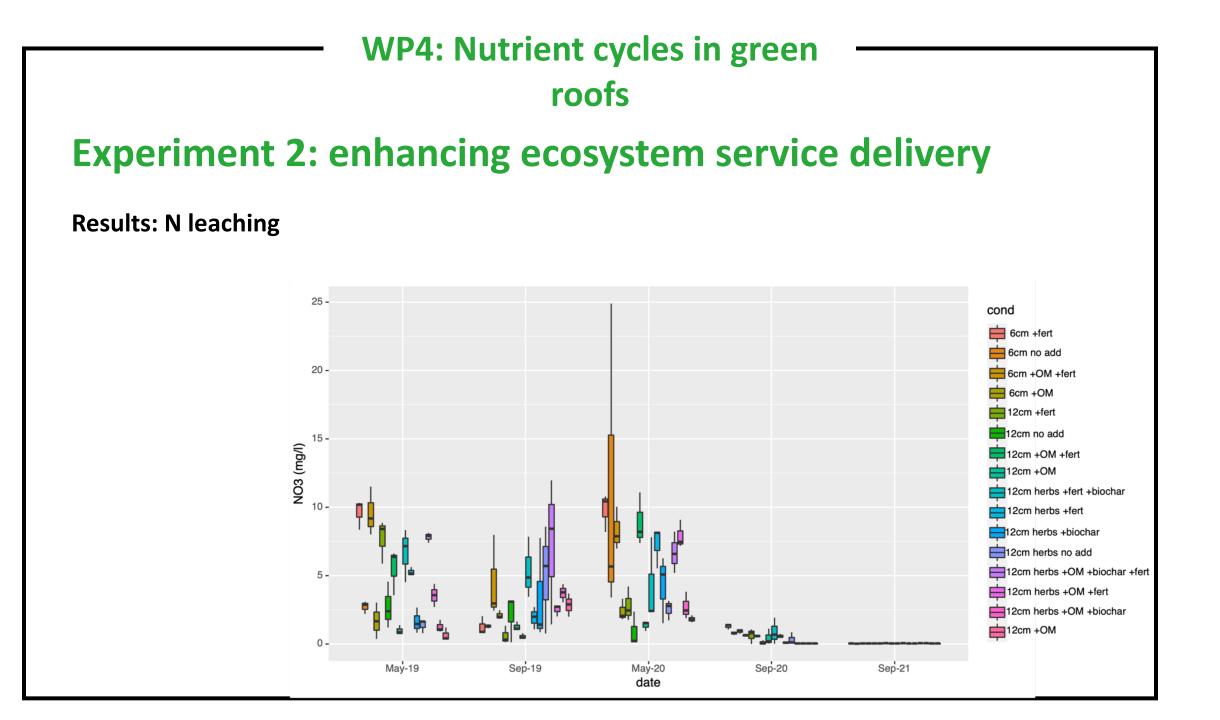

-N and P pool dynamics + leachates: nutrient retention



Experiment 2: enhancing ecosystem service delivery

Results: factors influencing C pools

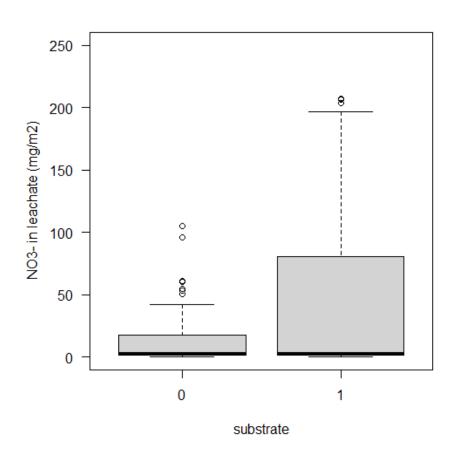
-OM: x2 -Biochar: x2



date

Experiment 2: enhancing ecosystem service delivery

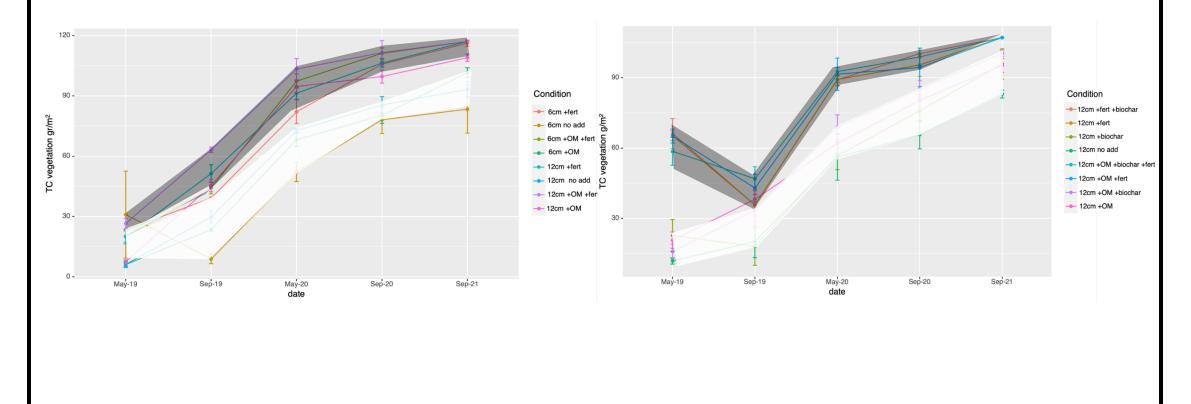
TC soil (g/m^2) **Results: C sequestration** Condition May'19 Sep '21 Increase (Sep '21-May'19) + fert + herbs 12cm 1130.42 2011.93 881.51 +fert 6cm 720.51 753.17 1473.68 + biochar + herbs 12cm 2389.28 3006.82 617.54 +OM +fert +herbs 12cm 2509.79 3091.32 581.53 +OM +fert 12cm 2591.28 3131.43 540.15 +OM +herbs 12cm 361.1 2661.74 3022.84 +OM +fert 6cm 2439.23 2796.64 357.41 +OM 12cm 2577.42 2928.71 351.29 No add 12cm 1088.62 1433.84 345.22 +fert 12cm 1189.41 1522.93 333.52 +fert + biochar +herbs 12cm 2850.13 3147.97 297.4 No add 6cm 747.58 1042.90 295.32 +herbs 1094.89 1359.90 265.01 +OM 6cm 2232.37 2364.23 131.86 +OM +biochar + herbs 4472.50 4405.95 -66.55 +OM +biochar +fert +herbs 4387.76 4114.85 -272.91


Experiment 2: enhancing ecosystem service delivery

Results: N leaching

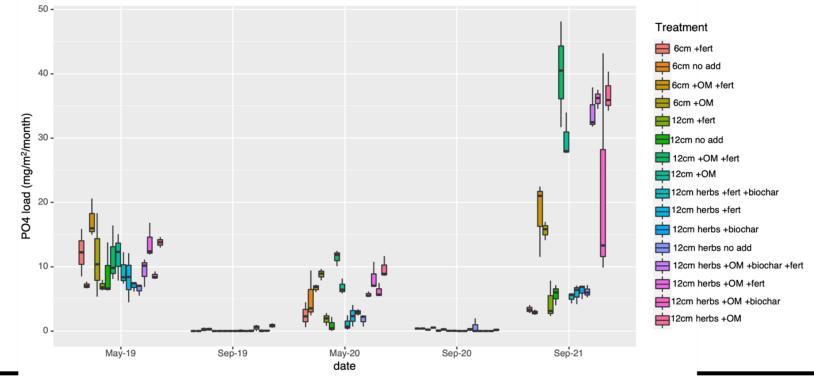
-main factor = fertilization
-almost all as nitrate
-any buffer effect overshadowed by fertilization
-non-fertilized: assuming 30kg/ha N depositin of which 50% in NO3

(hence 1.5 g/m2/year)


Leaching in average only 0.09 g of nitrate-N/m2/y -> 94% of nitrate-N was retained in the roof.

Experiment 2: enhancing ecosystem service delivery

Results: N leaching


-fertilization (grey) had only minor effect on plant cover

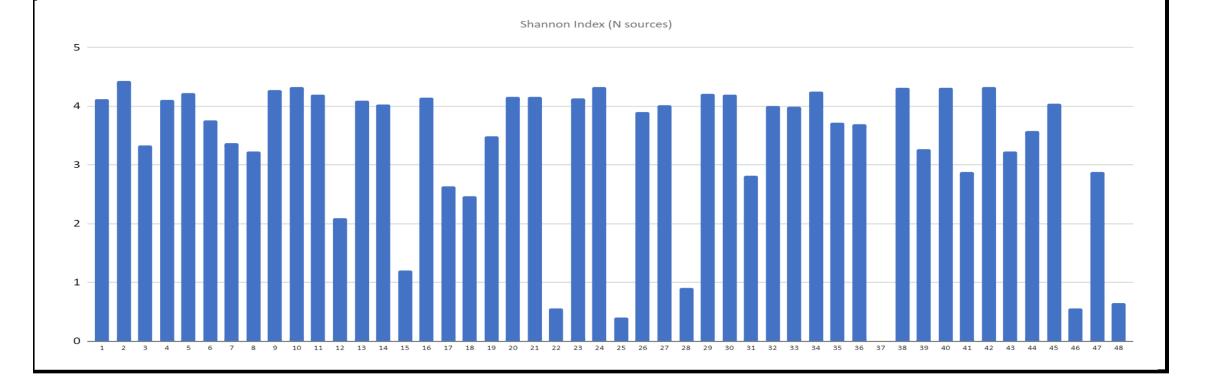
Experiment 2: enhancing ecosystem service delivery

Results: P leaching

- On average a green roof loses 0.23 g/m2/year
- Compared to the stocks (80-120 g/m2), PO4 leaching is low (0-0.04 g/m2)
- Adding OM increases PO4 leaching significantly

Experiment 2: enhancing ecosystem service delivery

-Summary:


- -Significant C sequestration in first years
- -Added OM or biochar does not leach nor decompose -> also sequestered
- -Fertilization adds significant N leaching, minor advantage for plant -> necessary?
- -Lots of P, but does not leach much, so no major issue for water quality

Experiment 1&2: functional diversity

Results: functional diversity

- Based on use of 96 N and 96 P sources -> diversity of functions instead of species
- Method still needs to be set up data not reliable yet ongoing work

Questions

Questions that you would like to ask to other partners?